Overclocking Ryzen 3000

Experience with the ASRock X570 Phantom Gaming-ITX/TB3

Sometimes it's assumed that smaller form factor motherboards tend to not overclock as well as larger ATX boards. In the real world, the differences are relatively minute, mostly being limited by cramped builds and cooling that doesn't perform as well. In an open environment, there have been mini-ITX motherboards capable of taking world records. Another issue is that on the smaller boards, there is certainly less room for some componentry and when it comes to overclocking, there is much less room for error with the need for vendors to get things right from the outset. But when the hardware is done right, users shouldn't expect much difference.

From the perspective of overclocking, ASRock's Phantom Gaming firmware is wholesome with plenty of options to overclock both processors and memory. To achieve most overclocks, users only need to concern themselves with settings including CPU Core Frequency, CPU VCore voltage, and with the excessive heat generated by AMD's 7nm desktop processors, adequate cooling. For memory overclocking, users can enable X.M.P profiles within the OC Tweaker section or go about customizing settings through the memory frequency, memory voltage, and the FCLK/Infinity Fabric frequency settings. For more advanced tuning, ASRock offers a DRAM Timing Configurator which allows users to tweak primary, secondary, and tertiary memory settings. 

Aside from a couple of high-performance memory overclocking profiles, enabling Precision Boost Overdrive, and an Eco CPU profile, there is nothing else terms of automatic overclocking options. Unlike some of ASRock's firmware, the main screen actually lacks anything of real substance and users looking to enable X.M.P memory profiles have to navigate around the OC Tweaker section looking for it. It would have been nice to have more options in regards to overclocking profiles, but it's not surprising given the limitations of overclocking the current generation of Ryzen 3000 processors. There's a lot of heat to deal with at what is considered the middle of the run overclocks such as 4.3 GHz, and if and when AMD's second-generation on 7nm comes around, users will be expecting a little more from firmware and core clock speeds.

Overclocking Methodology

Our standard overclocking methodology is as follows. We select the automatic overclock options and test for stability with POV-Ray and OCCT to simulate high-end workloads. These stability tests aim to catch any immediate causes for memory or CPU errors.

For manual overclocks, based on the information gathered from the previous testing, starts off at a nominal voltage and CPU multiplier, and the multiplier is increased until the stability tests are failed. The CPU voltage is increased gradually until the stability tests are passed, and the process repeated until the motherboard reduces the multiplier automatically (due to safety protocol) or the CPU temperature reaches a stupidly high level (105ºC+). Our testbed is not in a case, which should push overclocks higher with fresher (cooler) air.

Overclocking Results

The ASRock X570 Phantom Gaming-ITX/TB3 is a solid example of VDroop working correctly with the load line calibration settings set to default settings. When manually overclocking, the variation of VDroop ranges from 0.006 V at 4.3 GHz, to 0.013 and 0.019 V on the CPU VCore at full load when compared with what was set in the firmware. All of the VDroop observed was undervolted meaning it had a very positive impact on power consumption at full load, and we experienced very consistent POV-Ray performance as we went up in each 100 MHz increment. 

The highlight is the Eco mode which the firmware states is set to 45 W with our Ryzen 7 3700X processor. This is a 65 W TDP processor and when using the Eco Mode profile, we saw good POV-Ray performance with an equally good showing in power consumption too. In relation to manual overclocks, the Eco Mode on the ASRock X570 Phantom Gaming-ITX/TB3 performed similarly to our POV-Ray result at 3.8 GHz; not for users looking for high-performance, but perfect for small form factor enthusiasts looking for a good 24/7 mode where heat may be a limiting factor.

Unlike our experience with the GIGABYTE X570 Aorus Xtreme motherboard, enabling precision boost overdrive on the ASRock X570 Phantom Gaming-ITX/TB3 had little to no effect on performance over the default settings which suggests the firmware is at fault somewhere. Our default run did run a little on the warm side compared to what we have seen in previous X570 reviews and the extra heat can be attributed to a load CPU VCore value of 1.337; there is nothing 'leet' about this and we expected a little better.

Gaming Performance Power Delivery Thermal Analysis
Comments Locked

64 Comments

View All Comments

  • HardwareDufus - Wednesday, October 9, 2019 - link

    This board is sooooo close to what I want. However, a 2nd M.2 slot, for a 2nd NVMe drive is necessary. I know it's allot to ask for in an m-ITX board, but it can be done.
  • shabby - Wednesday, October 9, 2019 - link

    Next version they add a second nvme slot "oh I wish it had 10gbit lan, almost prefect..."
  • wolrah - Wednesday, October 9, 2019 - link

    > Next version they add a second nvme slot "oh I wish it had 10gbit lan, almost prefect..."

    To be fair, at least something >1gbit *should* have been standard on high-end boards long ago, but for whatever reason no one's integrated it in to a chipset.

    Instead we get a compact desktop board that wastes precious space with WiFi. WiFi is for things that move and things that get placed in odd locations where wiring is impractical. Desktop computers are neither of those things. Even if you're one of those screwballs who refuses to plug in a cable or insists on placing your computer in some weird place it's not like WiFi is fast enough that USB would be a bottleneck, so there's no good reason for it to be taking up space on a motherboard.

    Hell, actually a M.2 slot would be a win-win there, those who want WiFi can install it instead of a SSD.
  • DiHydro - Wednesday, October 9, 2019 - link

    No, I think he is right. Being able to stick another M.2 drive in there is super helpful, especially as if you leave it open for a cheaper/slower SSD as more of a mass storage option. Personally, I want it for two 2 TB intel drives right off the bat, then I will add another SATA drive if I need it at that point.
  • 29a - Thursday, October 10, 2019 - link

    just buy a 4 tb samsung
  • 29a - Thursday, October 10, 2019 - link

    or use sata ssd's for the slower cheap storage
  • wr3zzz - Monday, October 14, 2019 - link

    Your obviously have never worked with ITX or even mATX cases. An extra M.2 slot is a godsend vs. the space and cabling headaches of sata drives in SFF.
  • DCide - Wednesday, October 9, 2019 - link

    Collectively, these are some of the worst comments I’ve ever seen on AT. This is probably the best mITX motherboard board ever designed - even surpassing ASRock’s excellent X299 boards.

    16 high-performance cores, nearly 4000 points in Cinebench R15, 64GB of high-speed DD4, 18TB of SSD storage (2TB at 3GB/s and 16TB at 1.5GB/s), 6 USB3 ports (two of them Gen 2), and the first full-speed Thunderbolt 3 ever on an mITX motherboard! In fact, being on AMD, I won’t be shocked if it turns out to run at 40Gbps, rather than the expected 32Gbps (on Intel ATX) or 16Gbps (on Intel mITX).

    WiFi is useful on a portable form factor (at minimal expense), while 10GbE generates significant heat and adds nearly $100 to the cost. I think every complaint here can be addressed with proper system design, and Thunderbolt 3 makes all the difference, allowing one to add e.g. 10GbE and USB 3 as needed. In fact, TB3 makes this the first mITX board that can transfer files at 2/3 GB/s (in/out) and operate an eGPU with all 4 PCIe 3.0 lanes!

    Ironically, the only significant drawback wasn’t mentioned yet - the lack of an iGPU on Zen 2 (useful e.g. for video encoding) which could free up the PCIe slot/lanes for other uses.
  • chx1975 - Wednesday, October 9, 2019 - link

    The Thunderbolt chip, out of necessity, is the same Intel Titan Ridge you'd find on Intel ATX boards or some laptops. While this motherboard is the first to integrate it, there were reports on various forums of the Gigabyte Titan Ridge card (not the Alpine Ridge) working in AMD motherboards without connecting the special header it has. There is no Titan Ridge LP so the bus speed will be 40gbps and the data speed will be 22gbps. That's the same across all TB3 controllers, except the Alpine Ridge LP where the data speed will be 16gps and the bus speed, I think even after this many years, is simply unknown. 20gbps would make sense but it could be just the 18gbps necessary to run a DisplayPort. But then again, there is no common sense where Intel and Thunderbolt is concerned, noone knows why they gimped the data speed on full speed controllers to 22gbps.
  • DCide - Wednesday, October 9, 2019 - link

    No, I agree there’s not much common sense there - even down to questions such as “why is TB3 networking limited to 10Gbps” (and reportedly not even reliable enough for production - I’ve only used it in testing scenarios).

    I had not heard of the 22gbps data limit, but even if it applies here this motherboard should still be the most flexible and highest performance mITX model available, and (fortunately) could still approach 3GB/s transfer rates.

Log in

Don't have an account? Sign up now