WD Red Pro Review: 4 TB Drives for NAS Systems Benchmarked
by Ganesh T S on August 8, 2014 9:00 AM ESTIntroduction and Testbed Setup
A couple of weeks back, Western Digital updated their NAS-specific drive lineup with 5 and 6 TB Red drives. In addition, 7200 RPM Red Pro models with 2 - 4 TB capacities were also introduced. We have already looked at the performance of the WD Red, and it now time for us to take the WD Red Pro for a spin. In our 4 TB NAS drive roundup from last year, we also indicated that efforts would be taken to add more drives to the mix along with an updated benchmarking scheme involving RAID-5 volumes. The Red Pro gives us an opportunity to present results from the evaluation of various drives that have arrived in our labs since then.
The SMB / SOHO / consumer NAS market has been experiencing rapid growth over the last few years. With declining PC sales and increase in affordability of SSDs, hard drive vendors have scrambled to make up for the deficit and increase revenue by targeting the NAS market. The good news is that the growth is expected to accelerate in the near future (thanks to increasing amounts of user-generated data through the usage of mobile devices). In addition, security threats such as SynoLocker have also underscored the necessity of frequent backups.
Back in July 2012, Western Digital began the trend of hard drive manufacturers bringing out dedicated units for the burgeoning SOHO / consumer NAS market with the 3.5" Red hard drive lineup. The firmware was tuned for 24x7 operation in SOHO and consumer NAS units. 1 TB, 2 TB and 3 TB versions were made available at launch. Later, Seagate also jumped into the fray with a hard drive series carrying similar firmware features. Over the last two years, the vendors have been optimizing the firmware features as well as increasing the capacities. On the enterprise side, hard drive vendors have been supplying different models for different applications, but all of them are quite suitable for 24x7 NAS usage. While mission-critical applications tend to use SAS drives, it is the nearline SATA versions that are more suitable for home / SMB users. These enterprise drives provide better reliability / longer warranties compared to the NAS-specific WD Red and the Seagate NAS HDD lineups.
The correct choice of hard drives for a NAS system is influenced by a number of factors. These include expected workloads, performance requirements and power consumption restrictions, amongst others. In this review, we will discuss some of these aspects while evaluating ten different hard drives targeting the NAS market. One of the most glaring omissions in our list is HGST's Deskstar NAS. Due to HGST's strange sampling scheme, we are still trying to obtain enough drives for our NAS-specific benchmkaring, but they did send us their 4 TB SAS drive for participation in this roundup. Other than the HGST SAS drive, the other nine drives all carry a SATA interface.
- WD Red Pro (WD4001FFSX-68JNUN0)
- Seagate Enterprise Capacity 3.5" HDD v4 (ST4000NM0024-1HT178)
- WD Red (WD40EFRX-68WT0N0)
- Seagate NAS HDD (ST4000VN000-1H4168)
- WD Se (WD4000F9YZ-09N20L0)
- Seagate Terascale (ST4000NC000-1FR168)
- WD Re (WD4000FYYZ-01UL1B0)
- Seagate Constellation ES.3 (ST4000NM0033-9ZM170)
- Toshiba MG03ACA400
- HGST Ultrastar 7K4000 SAS (HUS724040ALS640)
The above drives do not target the same specific market. For example, the WD Red and Seagate NAS HDD are for 1- 8 bay NAS systems in the tower form factor. The WD Red Pro is meant for rackmount units up to 16 bays, but is not intended to be a replacement for drives such as the WD Re, Seagate Constellation ES.3, Seagate Enterprise Capacity v4 and the Toshiba MG03ACA400 which target enterprise applications requiring durability under heavy workloads. The WD Se and the Seagate Terascale target the capacity-sensitive cold storage / data center market.
Testbed Setup and Testing Methodology
Unlike our previous evaluation of 4 TB drives, we managed to obtain enough samples of the new drives to test them in a proper NAS environment. As usual, we will start off with a feature set comparison of the various drives, followed by a look at the raw performance when connected directly to a SATA 6 Gbps port. In the same PC, we also evaluate the performance of the drive using some aspects of our direct attached storage (DAS) testing methodology. For evaluation in a NAS environment, we configured three drives of each model in a RAID-5 volume and processed selected benchmarks from our standard NAS review methodology. Since our NAS drive testbed supports both SATA and SAS drives, but our DAS testbed doesn't, the HGST SAS drive was not subject to any of the DAS benchmarks. We plan to carry more detailed coverage of the HGST SAS unit in a future SAS-specific roundup.
We used two testbeds in our evaluation, one for benchmarking the raw drive and DAS performance and the other for evaluating performance when placed in a NAS unit.
AnandTech DAS Testbed Configuration | |
Motherboard | Asus Z97-PRO Wi-Fi ac ATX |
CPU | Intel Core i7-4790 |
Memory |
Corsair Vengeance Pro CMY32GX3M4A2133C11 32 GB (4x 8GB) DDR3-2133 @ 11-11-11-27 |
OS Drive | Seagate 600 Pro 400 GB |
Optical Drive | Asus BW-16D1HT 16x Blu-ray Write (w/ M-Disc Support) |
Add-on Card | Asus Thunderbolt EX II |
Chassis | Corsair Air 540 |
PSU | Corsair AX760i 760 W |
OS | Windows 8.1 Pro |
Thanks to Asus and Corsair for the build components |
In the above testbed, the hot swap bays of the Corsair Air 540 have to be singled out for special mention.
They were quite helpful in getting the drives processed in a fast and efficient manner for benchmarking. For NAS evaluation, we used the QNAP TS-EC1279U-SAS-RP. This is very similar to the unit we reviewed last year, except that we have a slightly faster CPU, more RAM and support for both SATA and SAS drives.
The NAS setup itself was subjected to benchmarking using our standard NAS testbed.
AnandTech NAS Testbed Configuration | |
Motherboard | Asus Z9PE-D8 WS Dual LGA2011 SSI-EEB |
CPU | 2 x Intel Xeon E5-2630L |
Coolers | 2 x Dynatron R17 |
Memory | G.Skill RipjawsZ F3-12800CL10Q2-64GBZL (8x8GB) CAS 10-10-10-30 |
OS Drive | OCZ Technology Vertex 4 128GB |
Secondary Drive | OCZ Technology Vertex 4 128GB |
Tertiary Drive | OCZ Z-Drive R4 CM88 (1.6TB PCIe SSD) |
Other Drives | 12 x OCZ Technology Vertex 4 64GB (Offline in the Host OS) |
Network Cards | 6 x Intel ESA I-340 Quad-GbE Port Network Adapter |
Chassis | SilverStoneTek Raven RV03 |
PSU | SilverStoneTek Strider Plus Gold Evolution 850W |
OS | Windows Server 2008 R2 |
Network Switch | Netgear ProSafe GSM7352S-200 |
Thank You!
We thank the following companies for helping us out with our NAS testbed:
- Thanks to Intel for the Xeon E5-2630L CPUs and the ESA I-340 quad port network adapters
- Thanks to Asus for the Z9PE-D8 WS dual LGA 2011 workstation motherboard
- Thanks to Dynatron for the R17 coolers
- Thanks to G.Skill for the RipjawsZ 64GB DDR3 DRAM kit
- Thanks to OCZ Technology for the two 128GB Vertex 4 SSDs, twelve 64GB Vertex 4 SSDs and the OCZ Z-Drive R4 CM88
- Thanks to SilverStone for the Raven RV03 chassis and the 850W Strider Gold Evolution PSU
- Thanks to Netgear for the ProSafe GSM7352S-200 L3 48-port Gigabit Switch with 10 GbE capabilities.
62 Comments
View All Comments
dzezik - Friday, September 26, 2014 - link
that is why we do not use RAID but ZFS. think about itNavvie - Monday, August 18, 2014 - link
Thanks. Interesting read.colinstu - Saturday, August 9, 2014 - link
bought 4x 4TB SEs last year, at least I'm not missing out on anything!dzezik - Friday, September 26, 2014 - link
are you sure You still have Your data on the disk and not random zeros and ones. how can You be sure without daily scrubbing.HollyDOL - Monday, August 11, 2014 - link
Hi, are the bandwidths in graphs (page 5...) really supposed to be in Mbps (mega-bits per second)? Although it's correct bandwidth unit, the values seem to be really low (fastest tests would be about 30MB/s), the values provided I'd expect to be in MBps for the numbers to correspond...ganeshts - Monday, August 11, 2014 - link
Thanks for catching it. It is indeed MBps. I have fixed the issue.GrumpyOldCamel - Wednesday, August 13, 2014 - link
raid5, seriously?Why are you not focused on reliability, thankfully I see most of the other commentors are making similar points to mine, where did all the 10^16 and 10^17 drives go?
Why are we not exited about the newly leaked 10^18 drive?
When it comes to storage, you can keep size and you can keep speed, Im not interested.
I just want reliability.
Gear8 - Saturday, September 13, 2014 - link
Where measuring the heating ??? Where degrees Celsius ???dzezik - Friday, September 26, 2014 - link
Hey. This test setup is wrong. There is on SAS disk but there is no SAS HBA in the list of test setup. according to other tests benchamarks HGST SAS disk is the fastest from this list but it suffers because of poor or very poor controller. this comparison is worth nothing without good SAS HBA. and remember good HBA also increase SATA disk performance. embedded intel controllers are very simple and limited performance. good SAS HBA is about 150$ so it is not a big deal. regardsKingSmurf - Wednesday, October 22, 2014 - link
Just wondering this review states for the WD Se:Non-recoverable read errors per bits read < 1 in 10^14 and MTBF of 800k
while on WD's Specsheet it says for the Se:
Non-recoverable read errors per bits read < 1 in 10^15 and MTBF of 1 M (800k is the 1 TB only)
Did WD suddenly change the Spec Sheet - or was this review... let's say less than thorough?