AnandTech Storage Bench - The Destroyer

The Destroyer has been an essential part of our SSD test suite for nearly two years now. It was crafted to provide a benchmark for very IO intensive workloads, which is where you most often notice the difference between drives. It's not necessarily the most relevant test to an average user, but for anyone with a heavier IO workload The Destroyer should do a good job at characterizing performance.

AnandTech Storage Bench - The Destroyer
Workload Description Applications Used
Photo Sync/Editing Import images, edit, export Adobe Photoshop CS6, Adobe Lightroom 4, Dropbox
Gaming Download/install games, play games Steam, Deus Ex, Skyrim, Starcraft 2, BioShock Infinite
Virtualization Run/manage VM, use general apps inside VM VirtualBox
General Productivity Browse the web, manage local email, copy files, encrypt/decrypt files, backup system, download content, virus/malware scan Chrome, IE10, Outlook, Windows 8, AxCrypt, uTorrent, AdAware
Video Playback Copy and watch movies Windows 8
Application Development Compile projects, check out code, download code samples Visual Studio 2012

The table above describes the workloads of The Destroyer in a bit more detail. Most of the workloads are run independently in the trace, but obviously there are various operations (such as backups) in the background. 

AnandTech Storage Bench - The Destroyer - Specs
Reads 38.83 million
Writes 10.98 million
Total IO Operations 49.8 million
Total GB Read 1583.02 GB
Total GB Written 875.62 GB
Average Queue Depth ~5.5
Focus Worst case multitasking, IO consistency

The name Destroyer comes from the sheer fact that the trace contains nearly 50 million IO operations. That's enough IO operations to effectively put the drive into steady-state and give an idea of the performance in worst case multitasking scenarios. About 67% of the IOs are sequential in nature with the rest ranging from pseudo-random to fully random. 

AnandTech Storage Bench - The Destroyer - IO Breakdown
IO Size <4KB 4KB 8KB 16KB 32KB 64KB 128KB
% of Total 6.0% 26.2% 3.1% 2.4% 1.7% 38.4% 18.0%

I've included a breakdown of the IOs in the table above, which accounts for 95.8% of total IOs in the trace. The leftover IO sizes are relatively rare in between sizes that don't have a significant (>1%) share on their own. Over a half of the transfers are large IOs with one fourth being 4KB in size.

AnandTech Storage Bench - The Destroyer - QD Breakdown
Queue Depth 1 2 3 4-5 6-10 11-20 21-32 >32
% of Total 50.0% 21.9% 4.1% 5.7% 8.8% 6.0% 2.1% 1.4%

Despite the average queue depth of 5.5, a half of the IOs happen at queue depth of one and scenarios where the queue depths is higher than 10 are rather infrequent. 

The two key metrics I'm reporting haven't changed and I'll continue to report both data rate and latency because the two have slightly different focuses. Data rate measures the speed of the data transfer, so it emphasizes large IOs that simply account for a much larger share when looking at the total amount of data. Latency, on the other hand, ignores the IO size, so all IOs are given the same weight in the calculation. Both metrics are useful, although in terms of system responsiveness I think the latency is more critical. As a result, I'm also reporting two new stats that provide us a very good insight to high latency IOs by reporting the share of >10ms and >100ms IOs as a percentage of the total.

AnandTech Storage Bench - The Destroyer (Data Rate)

In terms of throughput, the SSD 750 is actually marginally slower than the SM951, although when you look at latency the SD 750 wins by a large margin. The difference in these scores is explained by Intel's focus on random performance as Intel specifically optimized the firmware for high random IO performance, which does have some impact on the sequential performance. As I've explained above, data rate has more emphasis on large IO size transfers, whereas latency treats all IOs the same regardless of their size.

AnandTech Storage Bench - The Destroyer (Latency)

The number of high latency IOs is also excellent and in fact the best we have tested. The SSD 750 is without a doubt a very consistent drive.

AnandTech Storage Bench - The Destroyer (Latency)

AnandTech Storage Bench - The Destroyer (Latency)

Performance Consistency AnandTech Storage Bench - Heavy
Comments Locked

132 Comments

View All Comments

  • kaisellgren - Friday, May 1, 2015 - link

    Do not forget the Fiji 390x!
  • dzezik - Saturday, May 7, 2016 - link

    who needs chipset for PCIe if You have 40 lanes directly from CPU. it is step back in the configuration. it was big step ahead to put memory and PCIe to CPU. the chipset is useless.
  • zrav - Thursday, April 2, 2015 - link

    >It's again a bit disappointing that the SSD 750 isn't that well optimized for sequential IO because there's prcatically no scaling at all

    That's a weird conclusion. I'd say it is quite impressive that the drive almost reaches peak throughput at QD 1 already. Requiring higher QD to achieve more throughput is a not a positive characteristic. But if that matters depends on the usage scenario ofc.
  • Kristian Vättö - Thursday, April 2, 2015 - link

    It's impressive that the performance is almost the same regardless of queue depth, but I don't find 1.2GB/s to be very impressive for a 1.2TB PCIe drive.
  • futrtrubl - Thursday, April 2, 2015 - link

    Unfortunately your use of un-normalised standard deviation for performance consistency makes them a barrier to understanding. A 1000 IOPS drive with 5% variance is going to have lower standard deviation and by the way you have presented it "better consistency" than a 10000 IOPS drive with 1% variance.
  • Kristian Vättö - Thursday, April 2, 2015 - link

    Any suggestions for improving the metric? Perhaps divide by the average IOPS or its square root to take that into account as well?
  • futrtrubl - Thursday, April 2, 2015 - link

    Yes, I think dividing by the average IOPs would be perfect. You could even x100 to get it to a sort of percentage deviation.
  • bricko - Saturday, April 4, 2015 - link

    Here is test and review of the new 750, what is up with boot time...its SLOWEST of 14 drives. Everything else is great, but boot time. The Plextor M6 is 15 seconds, the 750 is 34 sec....ideas

    http://techreport.com/review/28050/intel-750-serie...
  • Ethos Evoss - Saturday, April 4, 2015 - link

    Plextor SSDs - BEST
  • bricko - Saturday, April 4, 2015 - link

    Its only slow on the boot time, otherwise it beats ALL other ssd on different loads and tests , by 2 - 3 times....odd it seems

Log in

Don't have an account? Sign up now