It is generally accepted as common knowledge that the high-end RISC server vendors—IBM and Oracle—have been bleeding market share in favor of high-end Intel Xeon based servers. Indeed, the RISC market accounts for about 150k units while the x86 market has almost 10 million servers. About 5% of those 10 million units are high-end x86 servers, so the Xeon E7 server volume is probably only 2-4 times the size of the whole RISC market. Still, that tiny amount of RISC servers represents about 50% of the server market revenues.

But the RISC vendors have finally woken up. IBM has several Power7+ based servers that are more or less price competitive with the Xeon E7. Sun/Oracle's server CPUs have been lagging severely in performance. The UltraSPARC T1 and T2 for example were pretty innovative but only performed well in a very small niche of the market, while offering almost ridicously low performance in any application (HPC, BI, ERP ) that needed decent per-thread performance.

Quite surprisingly, Oracle has been extremely aggressive the past few years. The "S3" core of the octal-core SPARC T4 launched at the end of 2011 was finally a competitive server core. Compared to the quad-issue Westmere core inside the contemporary Xeon E7 , it was still a simple core, but gone were the single-issue in-order designs of the T1 and T2 at laughably low clock speeds. No, instead, the SUN server chip received a boost to an out-of-order dual-issue chip at pretty decent 3GHz clocks. Each core could support eight threads but also execute two threads simultaneously. Last year, the Sparc-T5, an improved T4, had twice as many cores at 20% higher clocks.

As usual, the published benchmarks are very vague and are only available for the top models, the TDP is unknown, and the best performing systems come with astronomic price tags ($950,000 for two servers, some networking, and storage... really?). In a nutshell, every effort is made to ensure you cannot compare these with the servers of "Big Blue" or the x86 competition. Even Oracle's "technical deep dive" seems to be written mostly to please the marketing people out there. A question like "Does the SPARC T5 also support both single-threaded and multi-threaded applications?" must sound particularly hilarious to our technically astute readers.

Oracle's nebulous marketing to justify some of the outrageous prices has not changed, but make no mistake: something is brewing among the RISC vendors. SUN/Oracle is no longer the performance weakling in the server market, some IBM Power systems are priced quite reasonably, and the Intel Xeon E7—still based on the outdated Westmere Core—is starting to show its age. Not surprisingly, it's time for a "tick-tock" update of the Xeon E7. The new Xeon E7 48xx v2 is baked in a better process (22nm vs 32nm) and comes with 2012's "Ivy Bridge" core, enhanced for server/IT markets to become "Ivy Bridge EX".

Meet the New Xeon E7 v2
Comments Locked

125 Comments

View All Comments

  • Kevin G - Friday, February 21, 2014 - link

    And a quick addition:

    There will indeed be a quick adoption to Haswell-EX not because of AVX2 or DDR4 but rather transactional memory support (TSX). For the large databases and applications these systems are targeted at, TSX should prove to be helpful.
  • TiGr1982 - Friday, February 21, 2014 - link

    I agree, TSX should make a lot of sense for these E7's - they have a huge core count and huge shared memory at the same time.
  • Schmide - Friday, February 21, 2014 - link

    I think your L3 latency numbers are off. I think typical Intel L3 latencies are 30-40 clocks ~3-4ns.
  • Schmide - Friday, February 21, 2014 - link

    Oops my bad i miss used the calculator. Ignore.
  • dylan522p - Friday, February 21, 2014 - link

    No power consumption numbers?
  • JohanAnandtech - Saturday, February 22, 2014 - link

    Coming...we had to run lots of test in parallel, so it was not possible to make sure all systems were similar. Also we should test with workloads that require a lot more memory to get an idea.
  • mslasm - Friday, February 21, 2014 - link

    Note that E7-8857 v2 has 12 cores but no HT, so only has 12 threads as well (see http://ark.intel.com/products/75254/Intel-Xeon-Pro... Thus it is not equivalent to a 3Ghz E7-4860V2, as 4860 has HT for a total of 24 threads

    Also, there must be a typo either in the graph or in the text on the "single thread" integer performance test: "Opteron ... at 2.4GHz would deliver about 2481 MIPs", while - according to the graph - it already delivers 2636 @ 2.3Ghz.
  • JohanAnandtech - Saturday, February 22, 2014 - link

    Good point. There is little gain from HT in OpenFoam, but it will influence the LZMA benchmarks. So the Openfoam findings are still valid, but not the LZMA. The kernel compile is somewhat in between.
  • JohanAnandtech - Saturday, February 22, 2014 - link

    I will rerun the benchmarks without HT to check.
  • mslasm - Saturday, February 22, 2014 - link

    Thanks! I did not mean to imply HT matters "a lot", but it may influence some (and I admit I don't know much about how your benchmarks behave, other than parallel LZMA which I worked a lot with) - so it just does not sound right to outright call it equivalent, and I wish AT only has statements anyone can just trust :)

Log in

Don't have an account? Sign up now